📜

[Naor-OT05]Computationally Secure Oblivious Transfer

keywords: Cryptography, Privacy preserving computation, Secure function evaluation, Oblivious transfer

ABSTRACT

contributions: computationally secure protocols of

1 Introduction

1.1 Oblivious Transfer

Oblivious Transfer (OT)
Note that this transformation takes DH-tuples to DH-tuples, and non-DH-tuples to non-DH-tuples. Furthermore, the new exponents are independent of the originals. This is easy to see if we start with a DH tuple.
https://crypto.stanford.edu/pbc/notes/crypto/ot.html

1.2 Correctness and Security Definitions

receiver: 计算上不可区分获得的值和随机值
sender: 对于sender,要求real implementation of the protocol 和 ideal model不可区分,即不可以获得比ideal model 下更多的信息 ideal implementation: a trusted party

formal def:

2 Protocols for 1-out-of-N Oblivious Transfer

PRF FK(x)F_K(x):

有两种实现1-out-of-N OT的协议: 一种是使用logN次 1-out-of-2 OT协议 另一种是使用递归式的方法:将1-out-of-N分为两个1-out-of-N\sqrt{N} OT
两个协议中最主要的是transfer stage中调用1-out-of-2。 不过后一种协议再初始化阶段是O(N)的复杂度,另一个是O(NlogN)的复杂度。

2.1 A Protocol for 1-out-of-N OT

Protocol

  1. sender B prepares ll random pairs of keys B准备logN个密钥对,每个密钥对中一个对应比特0,一个对应比特1。对每一个XIX_I都做mask操作,具体来说就是根据II的比特位来选择密钥,用PRF的output依次mask。
  1. A and B engage in a 1-out-of-2 OT on <Kj0,Kj1><K_j^0,K_j^1> A和B执行logN次 1-out-of-2 OT,得到A的选择II对应比特位的密钥。
  1. B sends to A the string Y B向A发送N个加密后的Y = E(X)。
  1. A reconstructs X A只有他所选择值的密钥,只能解密出其中一个。

Complexity

invocation: a request for help

Improvement

2.2 A Recursive Protocol for 1-out-of-N OT

protocol

  1. B prepares two sets of N\sqrt{N} randomly chosen keys. B arranges the N inputs in a N×N\sqrt{N}\times\sqrt{N} matrix. B准备两组sqrt(N)的随机密钥。再把这N个值组合为一个矩阵,这样就可以用行列来索引。B对每个值都用行列索引来加密。
  1. A and B engage in a 1-out-of-N\sqrt{N} OT protocol A 和B执行1-out-of-N\sqrt{N} OT,让A得到目标选择的行列密钥。
  1. B sends to A all the Y
  1. A reconstructs X A只有目标选择对行列密钥,所以只能得到一个值。

complexity

2.1协议被认为是 logn维密钥加密的,而2.2协议被认为是2维加密